Physics exam

 0    80 fiche    natifilar
Télécharger mP3 Imprimer jouer consultez
 
question język polski réponse język polski
positive motion direction
commencer à apprendre
positive motion direction le polonais
przeciwnie do zegara
a tan
commencer à apprendre
r × alfa
a rad (2 sposoby)
commencer à apprendre
omega^2 ×r =v^2/r
angular acceleration average
commencer à apprendre
α= (ω2-ω1)/t2-t1
ω if ang. acc. is constant
commencer à apprendre
ω= ω0 +αt
qngle if ang acc is constant
commencer à apprendre
θ= θ0+ω0t+αt^2/2
condition of rolling
commencer à apprendre
v=ωr
Moment of inertia
commencer à apprendre
I=x(m1r1^2 +m2r2^2+...)
the bigger moment of inertia
commencer à apprendre
the more energy needed, the harder to start rotation
kinetic energy in rotation
commencer à apprendre
E= 1/2 Iω^2
work in rotation
commencer à apprendre
W=FΔx or ΔEk
Potential energy in sprężyna
commencer à apprendre
1/2 kx^2
momentum
commencer à apprendre
p = mv
Steiner
commencer à apprendre
I=I0 + md^2 (d-odleglosc od osi obrotu)
Torque 2 methods
commencer à apprendre
T= r x F (cross product, rFsinθ) OR T=αI (α -angular acc)
density
commencer à apprendre
ρ=m/V
pressure
commencer à apprendre
p=F/A
pressure on the depth
commencer à apprendre
p=p0 + ρgh (p0-cisnienie atmosferyczne 10^5Pa)
weight of object in water
commencer à apprendre
w=ρ object V zanurzone g
BUOYANCY weight of displaced fluid =sila wyporu
commencer à apprendre
B=ρ fluid V displaced g = mg jesli sytuacja jest stanilna
fluid movement mass conservation
commencer à apprendre
p1A1v1=p2A2v2
Bernoulli's equation - comparing points in the same flowtub
commencer à apprendre
p + ρgh + 1/2ρv^2 =const.
Δ thermal expansion
commencer à apprendre
ΔL=αL0Δt (α - thermql expansion cooficiant)
lenght after thermal expansion
commencer à apprendre
L=L0 + αL0ΔT
volumetric expansion
commencer à apprendre
ΔV=3αV0ΔT
change temperature by Q
commencer à apprendre
Q= cmΔT
molar heat capacity
commencer à apprendre
C=mc
phase change Q
commencer à apprendre
Q=mL
conduction heat
commencer à apprendre
Q= kAΔT (A-powierzchnia styku
thermal resistance
commencer à apprendre
R=L/(Ak) (L-lenght, A - area of section)
heat radiation
commencer à apprendre
H=σeAT4 (A -surface area, σ-stała Stefana Boltzmana, e - material propety)
H net heat radiation
commencer à apprendre
H net =σeAT4 enviroment - σeAT4 object
Young's modulus
commencer à apprendre
y= F lo / AΔl (lo- poczatkowa dlugosc rozciaganego ciala)
Bulk stress
commencer à apprendre
B= -Δpvo/Δv (p pressure v objetosc)
Shear stress
commencer à apprendre
S=Fh/Ax
prędkość katowa - oscillation
commencer à apprendre
ω=2πf
Hooke's law (restoring force)
commencer à apprendre
F=-kx
oscillation: x(t)
commencer à apprendre
x(t)= A cos (ωt + θ)
oscillation: v(t)
commencer à apprendre
v(t)=-ωAsin(ωt+θ)
oscillation: a(t) 2 methods
commencer à apprendre
a(t)= (-k/m) x(t) OR a(t)=-ω^2 A cos(ωt+θ)
Predkosc katowa ω w oscylacji
commencer à apprendre
ω= sqrt (k/m)
for small θ k dla wahadla
commencer à apprendre
k= mg/L
for small θ T
commencer à apprendre
T= 2π sqrt(L/g)
wave velocity
commencer à apprendre
v=λ/T
wave function
commencer à apprendre
y(x,t)= A cos(kx - ωt)
wave number
commencer à apprendre
k= 2π/λ
wave ω
commencer à apprendre
ω = vk
wave v(t)
commencer à apprendre
v(t)= ωA sin (kx-ωt)
wave a(t)
commencer à apprendre
a(t)= -ω^2 A cos(kx- ωt)
wave speed
commencer à apprendre
v= sqrt restoring force/inertia resisting the force
max wave power
commencer à apprendre
P max = sqrt(μF) ω^2A^2
Intensity of wave
commencer à apprendre
I = P/A (if 3D wave, the area= 4πr^2)
intensity to r of 2 waves
commencer à apprendre
I1/I2= r2^2 /r1^2
string fixed with 2 ends λ
commencer à apprendre
λ= 2L/n
normal mode frequency
commencer à apprendre
f= nv/2L
fundamental frequency
commencer à apprendre
sqrt(F/μ)/2L
speed of sound wave in fluid
commencer à apprendre
v=sqrt (B/ρ) B-Bulk modulus
speed of sound wave in q rod
commencer à apprendre
v= sqrt(Y/ρ) Y-Yungs modulus
speed of sound in ideal gas
commencer à apprendre
v= sqrt (γRT/M) M-molar mass
sound power max
commencer à apprendre
P= 1/2 sqrt(μF)ω^2A^2 (in fluid μ>ρ, F>B)
sound intensity
commencer à apprendre
I=Pmax/2ρv
open pipe f
commencer à apprendre
f= nv/2L
open pipe lenght
commencer à apprendre
L=nλ/2
stopped pipe f
commencer à apprendre
f=nv/4L but n is nieparzyste
stopped pipe lenght
commencer à apprendre
L=nλ/4 but n nieparzyste
beat frequency
commencer à apprendre
f= |f1-f2|
voltage 2 methods
commencer à apprendre
V=U/q (U - potential energy) OR V=EL (E-electric field, L-lenght of wire)
current 2 methods
commencer à apprendre
I=Q/Δt OR I=nAqv (n-number of charges per unit of volume, A-area of section, v- drift velocity) OR
Ohm's law
commencer à apprendre
R=V/I
electric field
commencer à apprendre
E= F/q
current density
commencer à apprendre
J=I/A
Resistivity
commencer à apprendre
ρ=R/J (E-electric field, J-current density)
Resistence (not from Ohms law)
commencer à apprendre
R=ρL/A (ρ-Resistivity, L-lenght of wire, A-area of section)
electromotive force
commencer à apprendre
ε=IR (often happens that I(R+r))
woltomierz
commencer à apprendre
równolegle, R>nieskończoność
amperomierz
commencer à apprendre
szeregowo, R>0
internal energy of resistor
commencer à apprendre
U=NqΔV (V-voltage, N-number of charges)
power of resistor 2 methods
commencer à apprendre
P= U internal /Δt = ΔV^2/R
capacitor
commencer à apprendre
C= Q/ΔV
forth kinematic formula
commencer à apprendre
v^2=v0^2​+2aΔx (Δx-przemieszczenie)

Vous devez vous connecter pour poster un commentaire.