PECNS T or F

 0    36 fiche    pawelkabza
Télécharger mP3 Imprimer jouer consultez
 
question réponse
Assume that in a subway station trains arrive at the platform with random interarrival time, exponentially distributed, on average every 10 minutes. We visit the platform everyday at 12:00. On average, we have to wait 5 minutes for the train.
commencer à apprendre
false
Assume that in a queue with a finite buffer the loss ration is 0.01, the burst ratio is 2. In such a case, the average length of the series of consecutive losses is slightly smaller than 2.
commencer à apprendre
false
Assume that in a queue with an infinite buffer (no losses), the arrival system is Poisson, the service time is uniform. In such a case, the output process is Poisson.
commencer à apprendre
false
Assume that the transition matrix of a discrete-time Markov chain is [0.2 0 0.8 1]. This Markov chain is irreducible.
commencer à apprendre
true
Assume that the transition matrix of a discrete-time Markov chain is [1 0.5 0 0.5]. The period of this chain equals 2.
commencer à apprendre
false
Assume we have a discrete-time Markov chain: X0, X1, X2, X3, ... The subsequence X0, X3, X6, X9, ... is a discrete-time Markov chain
commencer à apprendre
true
FES is an acronym from Forward Entrance System
commencer à apprendre
false
FES is an acronym from Future Event Set
commencer à apprendre
true
If the interarrival time distribution is exponential then the steady-state queue size distribution is the same as queue size distribution observed by arriving jobs
commencer à apprendre
true
In a queueing system the real, unknown probability of the queue size 30 is equal to 1.2345678910-6. Finding this probability with the six-digit precision, i.e. 1.2345610-6, requires more than 108 measurements of the queue size
commencer à apprendre
true
In a queueing system with a finite buffer it holds: X=(1-L)R
commencer à apprendre
true
In a queueing system with a finite buffer it is possible to compute the burst ratio, if we know only the loss ratio and the buffer size
commencer à apprendre
false
In a queueing system with a finite buffer it is possible to compute the empty system probability, if we know only the system load and the loss ratio.
commencer à apprendre
false
In a queueing system with a finite buffer the service time is constant and equal to 2. The duration of the buffer overflow period may be 1 in this system
commencer à apprendre
true
In a queueing system with a finite buffer the service time is constant and equal to 10. The duration of the buffer overflow period may be 15 in this system
commencer à apprendre
false
In a queueing system with losses it holds: L=1-(1-pn/p)
commencer à apprendre
true
In a queueing system with no losses, the average queue size is equal to the arrival rate multiplied by the average response time.
commencer à apprendre
true
In a queueing system with Poisson arrivals the average queue size distribution observed at arbitrary times is the same as when observed at arrival times.
commencer à apprendre
true
In an open Jackson network, for every queue it holds: Xi=(1-p)/p
commencer à apprendre
true
In every queueing system with a finite buffer, the loss ratio is equal to the full-buffer probability: L=pN
commencer à apprendre
false
In some queueing systems the distribution of the waiting time can be the same as the distribution of the virtual waiting time
commencer à apprendre
true
In some queueing systems with a finite buffer, the loss ratio is equal to the full-buffer probability: L=pN
commencer à apprendre
true
In the M/M/1 queueing system it holds: X=(1-p)/p
commencer à apprendre
false
Merging two Poisson processes of rates lambda1 and lambda2, respectively, creates another Poisson process of rate lambda1+lambda2
commencer à apprendre
true
Method empty() is used to remove all jobs from the queue
commencer à apprendre
false
Method front() adds a message at the beginning of the queue
commencer à apprendre
false
Method setNumCells() sets the maximum allowed queue size in a cQueue object
commencer à apprendre
false
Method scheduleAt() is used to schedule a message in the past
commencer à apprendre
false
simtime_t is a function returning the current simulated time
commencer à apprendre
false
The loss ratio may be equal to the full-buffer probability (i.e. the probability that queue size is N)
commencer à apprendre
true
The queue size distribution observed just before arrival times is the same as the queue size distribution observed just after departure times.
commencer à apprendre
false
The steady-state queue size distribution depends on the variance of the service time
commencer à apprendre
true
The system response time is the sum of the waiting time and the service time of a job
commencer à apprendre
true
The uniform distribution has the memoryless property
commencer à apprendre
true
The waiting time distribution is always the same as the virtual waiting time distribution
commencer à apprendre
false
Waiting distribution is always the same as the virtual waiting time distribution
commencer à apprendre
false

Vous devez vous connecter pour poster un commentaire.