Moja lekcja

 0    71 fiche    guest2888617
Télécharger mP3 Imprimer jouer consultez
 
question język polski réponse język polski
Kiedy mówimy, że ciało jest w ruchu
commencer à apprendre
Mówimy, że ciało znajduje się w ruchu wtedy, kiedy zmienia swoje położenie w czasie.
układ odniesienia
commencer à apprendre
Ukł. odn. może stanowić ciało lub ukł. ciał względem których będziemy określać położenie badanego ciała. W opisie mat. ukł. odniesienia jest ukł. współ., początek jest związany z ciałem względem, którego będziemy określać zmianę położenia badanego ciala.
względność ruchu
commencer à apprendre
Zatem, względem jednego ciała, badane ciało może znajdować się w ruchu a względem innego nie (względem jednego układu odniesienia ciało może znajdować się w ruchu, a względem innego nie). Zależność tą nazywamy względnością ruchu.
podział ruchu ze względu na kształt toru ruchu
commencer à apprendre
prostoliniowe, krzywoliniowe
podział ruchu ze względu na wartość prędkości
commencer à apprendre
ruch jednostajny (v= const.) ruchy jednostajnie 1 niejednostajnie zmienne (v + const)
cechy ruchu jednostajnie prostoliniowego
commencer à apprendre
tor ruchu jest linią prostą. wartość prędkości jest stała, czyli nie zmienia się w czasie. droga rośnie o tą samą wartość w takich samych przedziałach czasu, tzn. że droga jest wprost proporcjonalna do czasu.
opis ruchu jednostajnego prostoliniowego
commencer à apprendre
WYKRES prędkości od czasu. Ciało porusza się ruchem jednostajnym prostoliniowym z prędkością 2 m/min przez 5 min.
opis ruchu jednostajnego prostoliniowego
commencer à apprendre
WYKRES drogi od czasu. Ciało porusza się ruchem jednostajnym prostoliniowym z prędkością 2 m/min przez 5 min.
cechy ruchu jednostajnie przyspieszonego prostolinioweo
commencer à apprendre
Tor ruchu jest linią prostą. Prędkość jest wprost proporcjonalna do czasu. Wielkością charakterystyczną jest przyspieszenie a [m/s²]. Przyspieszenie ma stałą wartość w ruchu jednostajnie przyspieszonym. Droga jest wprost proporcjonalna do kwadratu czasu.
przyspieszenie
commencer à apprendre
przyspieszenie jest wprost proporcjonalne do zmiany prędkości a odwrotnie proporcjonalne do czasu w jakim ta zmiana nastąpiła.
opis ruchu jednostajnie przyspieszonego prostoliniowego
commencer à apprendre
WYKRES przyspieszenia od czasu. Ciało porusza się ruchem prostoliniowym jednostajnie przyspieszonym z przyspieszeniem 2 cm/s² przez 5 s.
wektor wodzący
commencer à apprendre
Wektor wodzący, to wektor łączący na układzie współrzędnych punkt obrazujący położenie ciała (współrzędne punktu) z początkiem układu współrzędnych.
Tor ruchu
commencer à apprendre
Tor ruchu to „ślad" jaki pozostawia po sobie poruszające się ciało.
przemieszczenie
commencer à apprendre
Przemieszczenie, to odległość pomiędzy położeniem końcowym początkowym ciała.
zmiana prędkości
commencer à apprendre
zmiana prędkości jest równa różnicy wartości prędkości końcowej ciała i jego prędkości początkowej:
ruch jednostajny prostoliniowy przyspieszony
commencer à apprendre
droga jaką pokonuje ciało w ruchu jednostajnie przyspieszonym jest wprost proporcjonalna do kwadratu czasu
cechy ruch jednostajnie opóźniony prostoliniowy
commencer à apprendre
Tor ruchu jest linią prostą. Wart. pręd. maleje o takie same wartości w każdej sek. Prędkość początkowa jest zawsze większa od 0. Wielkością ch. ruchu jest opóźnienie -a. Opóźnienie ma stałą wartość. Droga jest wprost proporcjonalna do kwadratu czasu.
opóźnienie
commencer à apprendre
opóźnienie jest wprost proporcjonalne do zmiany prędkości a odwrotnie proporcjonalne do czasu w jakim ta zmiana nastąpiła.
spadek swobodny cechy ruchu
commencer à apprendre
Ciało znajduje się w polu graw. ciała niebieskiego. Na ciało nie działa żadna siła oprócz siły grawitacji. Wektor przyspieszenia ma zgodny zwrot ze zwrotem wektora prędkości. Wartość przyspieszenia jest równa wartości przyspieszenia grawitacyjnego: a = g.
cechy spadku swobodnego
commencer à apprendre
W spadku swobodnym prędkość początkowa jest zawsze równa O m/s. • Czas spadania różnych ciał w próżni z tej samej wysokości jest taki sam. Czas spadania ciała w próżni nie zależy od masy ciała.
Ruch jednostajny po okręgu cechy
commencer à apprendre
Torem ruchu jest okrąg. Ciało poruszając się po takim torze posiada swój promień wodzący, który po określonym czasie zakreśla kąt. Stąd, cechą charakterystyczną tego ruchu jest droga kątowa i prędkość kątowa.
ruch jednostajny po okręgu cechy
commencer à apprendre
Charakter zależności drogi kątowej od czasu decyduje o tym, czy ruch po okręgu jest jednostajny, czy niejednostajny. Wartość liczbowa prędkości liniowej nie ulega zmianie (v = const.) ale kierunek wektora prędkości jest zmienny.
Wielkości charakterystyczne dla ruchu po okręgu
commencer à apprendre
droga liniowa jest równa długości okręgu. droga kątowa jest równa długości łuku jaki jest zakreślany przez promień wodzący ciała poruszającego się po okręgu.
siły dośrodkowe
commencer à apprendre
Na ciało poruszające się po okręgu działa siła dośrodkowa, a więc w każdym ruchu krzywoliniowym istnieje przyspieszenie. Jest to przyspieszenie dośrodkowe, które powoduje zakrzywienie toru ruchu.
wielkości charakterystyczne ruch po okręgu
commencer à apprendre
okres to czas potrzebny na wykonanie 1 obiegu po okręgu. częstotliwość to liczba pełnych okrążeń w czasie 1s. prędkość kątowa to zmiana drogi kątowej w określonym przedziale czasu. Prędkość liniową definiujemy jako iloraz drogi liniowej przebytej w czasie
Wielkości charakterystyczne dla ruchu zmiennego po okręgu
commencer à apprendre
prędkość kątowa nie ma wartości stałej, zatem przyspieszenie kątowe ma wartość różną od zera. Przyspieszenie kątowe jest równe zmianie prędkości kątowej w określonym przedziale czasu
Wielkości charakterystyczne dla ruchu zmiennego po okręgu
commencer à apprendre
Wektor przyspieszenia kątowego ma kierunek prostopadły do toru ruchu. Zwrot wektora przyspieszenia kątowego i prędkości kątowej jest zgodny, gdy mamy do czynienia z ruchem przyspieszonym, a przeciwny, gdy mamy do czynienia z ruchem opóźnionym po okręgu.
Cechy wielkości wektorowych
commencer à apprendre
wartość, punkt przyłożenia, kierunek, zwrot
Wielkości charakterystyczne dla ruchu zmiennego po okręgu:
commencer à apprendre
Istnienie przyspieszenia stycznego powoduje powstanie przyspieszenia wypadkowego z którym porusza się ciało. Wektory przyspieszenia dośrodkowego i stycznego są składowymi wektora wypadkowego a.
Newtonowskie zasady mechaniki
commencer à apprendre
Jeżeli siły mają zgodne zwroty, to należy: ⚫ obrać wspólny punkt przyłożenia. ⚫ od obranego punktu przyłożenia najpierw rysujemy siłę F1 potem F2 i F3 ⚫ wartość siły wypadkowej jest równa sumie wartości siły F₁, F2 F3
Newtonowskie zasady mechaniki
commencer à apprendre
Jeżeli sily mają przeciwne zwroty należy obrać wspólny p przyłożenia. Od obranego p rysujemy siły o zwrotach w górę i w dół. dodajemy wartości sił skierowanych w górę i w dół. wartość siły wypadkowej jest równa różnicy większej i mniejszej wartości siły.
Newtonowskie zasady mechaniki
commencer à apprendre
Jeżeli siły mają różny kierunek, to należy obrać wspólny p przyłożenia. równolegle przenieść jedną siłę na koniec drugiej i na odwrót żeby powstał równoleglobok. narysować przekątną równolegloboku. dł przekątnej odpowiada wartości siły wypadkowej.
I zasada dynamiki Newtona:
commencer à apprendre
Jeżeli na ciało nie działa żadna siła lub działające siły równoważą się, to ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym.
I zasada dynamiki Newtona jako zasada bezwładności
commencer à apprendre
Bezwładność to cecha sprawia że ciało które jest w spoczynku chce pozostać w spoczynku a ciało które porusza się ruchem jedn. prostoliniowym chce nadal poruszać się w taki sposób. Masa jest miarą bezwładności ciał Im większa masa, tym większa bezwładność
Il zasada dynamiki Newtona:
commencer à apprendre
Jeżeli na ciało działają siły, które się nie równoważą, to ciało porusza się ruchem zmiennym z przyspieszeniem wprost proporcjonalnym do działającej siły wypadkowej i odwrotnie proporcjonalnym do masy ciała.
II zasada dynamiki Newtona
commencer à apprendre
zwrot wektora działającej siły wypadkowej jest zgodny ze zwrotem wektora prędkości to ciało porusza się ruchem przyspieszonym. zwrot wektora działającej siły wypadkowej jest przeciwny niż zwrot wektora prędkości, to ciało porusza się ruchem opóźnionym
III zasada dynamiki Newtona
commencer à apprendre
Jeżeli ciało A działa siłą na ciato B, to jednocześnie ciało B oddziałuje na ciato A siłą równą co do wartości, mającą ten sam kierunek, lecz przeciwny zwrot i punkt przyłożenia.
III zasada dynamiki Newtona
commencer à apprendre
Siły jakimi oddziałują wzajemnie na siebie ciała nazywamy również siłą akcji z jaką ciało A działa na ciało Bi siłą reakcji z jaką działa ciało B na ciało A.
Od czego zależy siła tarcia
commencer à apprendre
Sila tarcia zależy od: - rodzaju podłoża, im bardziej chropowate jest podłoże, tym większa jest sita tarcia, - siły nacisku z jaką działa ciało na podłoże, czyli od ciężaru ciała.
cechy sił oporu
commencer à apprendre
zawsze przeciwdziałają ruchowi chcą zahamować ciało. zwrot wektora siły oporu jest zawsze przeciwny do zwrotu wektora prędkości. aby ruszyć ciało z miejsca trzeba zadziałać na to cialo siłą o wartości co najmniej równej wartości działającej siły oporu
prawo powszechnego ciążenia
commencer à apprendre
Dwa punkty materialne o masach m, im, przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości:
co wpływa na wartość przyspieszenia
commencer à apprendre
Na wartość przyspieszenia w różnych punktach Ziemi wpływają: kształt Ziemi, ruch obrotowy Ziemi dookola własnej osi, niejednorodność budowy Ziemi.
własność pola grawitacyjnego
commencer à apprendre
Potencjałem pola grawitacyjnego nazywamy stosunek energii potencjalnej, która jest równa pracy jaką trzeba wykonać aby przenieść ciało z nieskończoności pola do odległości rod masy M
I prawo Keplera
commencer à apprendre
I prawo Keplera: Wszystkie planety poruszają się po torach eliptycznych, w których w jednym ze wspólnych ognisk znajduje się Storice.
II prawo Keplera
commencer à apprendre
II prawo Keplera: Planety poruszają się w ten sposób, że pola zakreślane przez ich promień wodzący (poprowadzony od Stonca do planety) w takim samym czasie są sobie równe.
własność pola grawitacyjnego
commencer à apprendre
Natężenie pola grawitacyjnego jest wprost proporcjonalne do masy ciała tworzącego pole, a odwrotnie proporcjonalne do kwadratu odległości między ciałem o masie M a masą ciala
III prawo Keplera
commencer à apprendre
III prawo Keplera: Kwadraty okresów obiegu poszczególnych planet dookoła Słońca sa proporcjonalne do sześcianów ich średnich odległości od Słońca
rzut poziomy
commencer à apprendre
•W rzucie poziomym nadajemy ciału prędkość początkową V, w kierunku poziomym ale tor ruchu ciała ulega zakrzywieniu w wyniku działania siły ciężkości.
rzut poziomy
commencer à apprendre
Rzut poziomy jest złożeniem ruchu jednostajnego w kierunku poziomym i jednostajnie przyspieszonego w kierunku pionowym. Wynikiem złożenia tych dwóch ruchów jest powstanie prędkości wypadkowej, która jest styczna do toru ruchu w kształcie paraboli.
moc
commencer à apprendre
• Moc to jest ilość pracy wykonana w danym czasie
rzut ukośny
commencer à apprendre
⚫W rzucie ukośnym nadajemy cialu prędkość początkową V, pod kątem a w stosunku do poziomu, która jest sumą geometryczną dwóch składowych.
rzut ukośn
commencer à apprendre
Ciało poruszając się pod kątem a zakreśla łuk aby w połowie drogi osiągnąć wysokość maksymalną. Następnie zaczyna opadać, ponownie zakreślając łuk.
rzut ukośny
commencer à apprendre
Rzut ukośny jest złożeniem ruchu jednostajnie opóźnionego/przyspieszonego w kierunku pionowym i ruchu jednostajnego w kierunku poziomym.
praca
commencer à apprendre
Wykonana praca jest równa iloczynowi działającej na ciało siły i wartości drogi na jakiej to ciało uległo przesunięciu gdy działająca siła ma taki sam zwrot i kierunek jak kierunek ruchu. gdy działająca siła ma inny zwrot kierunek niż kierunek ruchu ciała
energia
commencer à apprendre
Energia jest to zasób pracy zmagazynowany w danym ciele, który może ulegać zmianie (maleć/rosnąć). Wartość energii nie jest stała i zależy od stanu danego ciała.
energia
commencer à apprendre
Energia jest to zasób pracy zmagazynowany w danym ciele, który może ulegać zmianie (maleć/rosnąć). Wartość energii nie jest stała i zależy od stanu danego ciała.
postacie energii
commencer à apprendre
→ Energia mechaniczna może występować w dwóch podstawowych postaciach: energia kinetyczna - energia związana z ruchem; energia potencjalna energia związana z położeniem ciał względem siebie.
energia
commencer à apprendre
Niemożliwe jest wyznaczenie całkowitej wartości energii posiadanej przez dane ciało. Można jedynie wyznaczyć zmiany energii (przyrosty/ubytki) znając stan początkowy i końcowy ciała.
energia kinetyczna
commencer à apprendre
Jeżeli siła wypadkowa jest równa zeru, to ciało zgodnie z I zasadą dynamiki Newtona porusza się ruchem jednostajnym, a jego energia kinetyczna ma stałą wartość (nie zmienia się).
energia kinetyczna a praca
commencer à apprendre
Jeżeli w chwili t = 0 s działania siły F ciało znajdowało się w spoczynku, to stan początkowy energii kinetycznej jest równy zeru, i praca sity F jest zużyta na nadanie ciału prędkości V₁, czyli jest równa końcowej wartości energii kinetycznej:
energia kinetyczna a praca
commencer à apprendre
Gdy przyłożona siła jest skierowana przeciwnie niż wektor pręd to ciało będzie się poruszać ruchem jed opóź. Prędkość ruchu będzie maleć. Wykonywana praca, w celu pokonania sil oporu, odbywa się kosztem energii kinetycznej tego ciała, która będzie maleć.
energia potencjalna
commencer à apprendre
Ciało posiada energię potencjalną jeżeli znajduje się na jakiejś wysokości względem początku układu odniesienia.
energia potencjalna a praca
commencer à apprendre
Jeżeli na wys podniesiemy ciało ruchem jed (działające siły się równoważą a siła wypad =0) z poziomu zerowego, to praca jaką trzeba wykonać będzie zużyta na pokonanie sily ciężkości i będzie zmagazynowana w ciele w postací energii potencjalnej
energia potencjalna a praca
commencer à apprendre
Energia potencjalna jest zależna tylko od poziomu na jakim znajduje się dane ciało - nie zależy od drogi wzdłuż jakiej się ono tam znalazło.
energia potencjalna a praca
commencer à apprendre
Praca wykonywana w celu pokonania sil potencjalnych (zachowawczych: ciężkości, sprężystości) jest magazynowana w ciele w postaci energii potencjalnej.
energia potencjalna a praca
commencer à apprendre
Praca wykonywana w celu pokonania sit oporu (rozpraszających, np. sila tarcia) zamieniana jest na energię cieplną (ulega rozproszeniu - dyssypacja energii).
energia potencjalna a praca
commencer à apprendre
Gdyby ciało znajdowało się już na jakimś poziomie, na którym posiada pewną energię potencjalną, to praca zużyta na pokonanie sity ciężkości by była równa przyrostowi energii potencjalnej:
energia potencjalna a praca
commencer à apprendre
Praca zużyta na pokonanie sit potencjalnych (zachowawczych) na drodze zamkniętej jest równa zeru.
zasada zachowania energii
commencer à apprendre
⚫ W układzie zachowawczym, całkowita energia mechaniczna E, równa jest sumie energii kinetycznej i potencjalnej, jest wielkością stałą (niezmienną w czasie)
zasada zachowania energii
commencer à apprendre
⚫ W układzie odosobnionym całkowita wartość energii pozostaje niezmienna: mogą w nim tylko zachodzić przemiany energetyczne (przekształcanie jednej postaci energii w drugą).
zasada zachowania pędu
commencer à apprendre
Jeżeli wypadkowa sił zewnętrznych działających na układ jest równa zeru, to całkowity pęd układu pozostaje staty.

Vous devez vous connecter pour poster un commentaire.