4-7

 0    28 fiche    adamomasz
Imprimer jouer consultez
 
question - réponse -
Grafy platońskie
commencer à apprendre
grafy, utworzone z krawędzi i wierzchołków wielościanów foremnych (np: sześcian). Wszystkie są regularne i planarne.
Grafy dwudzielne (Km,n)
commencer à apprendre
graf, którego zbiór wierzchołków można podzielić na dwa rozłączne zbiory tak, że krawędzie nie łączą wierzchołków tego samego zbioru. Równoważnie: graf, który nie zawiera cykli nieparzystej długości.
(Hiper-) kostki (Qi) -
commencer à apprendre
hiperkostka Qi (rzędu i: wierzchołki są ciągami binarnymi długości i, są sąsiednie tylko gdy różnią się jednym bitem).
Qi = Qi-1 x Q1. Kostka Qn składa się z dwóch kopii kostki Qn-1 oraz dodatkowo łączymy krawędziami każdy wierzchołek z "pierwszej" kostki Qn-1 z jego kopią w "drugiej" kostce Qn-1,
Dopełnienie grafu
commencer à apprendre
dopełnieniem G’ grafu G jest graf prosty, którego zbiorem wierzchołków jest V(G), i w którym dwa wierzchołki są sąsiednie w G’ ⇔ gdy nie są sąsiednie w G. G’ ma tylko te krawędzie, które były nieobecne w G.
Długość ścieżki
commencer à apprendre
- liczba jej krawędzi
Droga (ścieżka) -
commencer à apprendre
- naprzemienny ciąg wierzchołków i krawędzi (v0, e0, v1, eq, ..., vk, ek, ..., vl) taki, że krawędź ek zawsze łączy wierzchołki vk, vk+1. Droga prosta - nie powtarzają się krawędzie. Droga elementarna - nie powtarzają się wierzchołki
Cykl
commencer à apprendre
- ścieżka o długości co najmniej 3 (... dla grafów skierowanych >= 2), taka, że v0 == vl (początek i koniec są tożsame)
Obwód grafu
commencer à apprendre
długość najkrótszego cyklu elementarnego w grafe (czyli takiego cyklu, gdzie nie powtarzają się wierzchołki)
Zbiór rozspajający
commencer à apprendre
taki zbiór krawędzi grafu, po usunięciu którego graf ma więcej składowych spójnych
Rozcięcie
commencer à apprendre
minimalny zbiór rozspajający (żaden jego podzbiór właściwy nie jest rozspajający).
Spójność krawędziowa
commencer à apprendre
grafu spójnego G (oznaczenie: λ(G)) to liczba krawędzi najmniejszego rozcięcia. Graf jest k-spójny krawędziowo wtedy, gdy k <= λ(G), np. C4 jest 1-spójny krawędziowo i 2-spójny krawędziowo, ale nie 3-spójny krawędziowo.
Zbiór rozdzielający
commencer à apprendre
to taki podzbiór wierzchołków, po usunięciu którego (wraz z incydentnymi krawędziami) graf ma więcej składowych spójnych.
. Punkt artykulacji (wierzchołek rozdzielający/rozcinający)
commencer à apprendre
wierzchołek grafu G, którego usunięcie zwiększa liczbę spójnych składowych grafu. Inaczej: jednoelementowy zbiór rozdzielający.
Podział grafu na bloki
commencer à apprendre
Blok: maksymalny podgraf grafu nie zawierający wierzchołków rozdzielających dla tego podgrafu
Cykl Eulera
commencer à apprendre
taki cykl, który nie powtarza krawędzi i zawiera wszystkie krawędzie grafu.
Graf eulerowski -
commencer à apprendre
graf, w którym istnieje cykl Eulera, czyli daje się narysować bez odrywania długopisu zaczynając i kończąc w tym samym miejscu.
Ścieżka Eulera
commencer à apprendre
ścieżka, która nie powtarza krawędzi i zawiera wszystkie krawędzie grafu.
. Pół-eulerowski
commencer à apprendre
- taki, w którym istnieje ścieżka Eulera, czyli daje się narysować bez odrywania długopisu, niekoniecznie zaczynając i kończąc w tym samym miejscu.
Cykl Hamiltona
commencer à apprendre
cykl zawierający każdy wierzchołek dokładnie raz.
Graf hamiltonowski
commencer à apprendre
zawiera cykl Hamiltona
Pół-hamiltonowski
commencer à apprendre
zawiera ścieżkę przechodzącą przez każdy wierzchołek dokładnie raz.
Drzewo
commencer à apprendre
graf prosty, nieskierowany, który jest acykliczny i spójny, czyli taki graf, że z każdego wierzchołka drzewa można dotrzeć do każdego innego wierzchołka (spójność) i tylko jednym sposobem (acykliczność
Las
commencer à apprendre
prosty, niespójny i nieskierowany graf acykliczny, (czyli nie zawierający żadnych cykli). Wtedy jego spójne składowe są drzewami.
Drzewo spinające (rozpinające)
commencer à apprendre
Dla spójnego, nieskierowanego grafu prostego G=(V,E) to taki podgraf T tego grafu, który jest drzewem i zawiera wszystkie wierzchołki danego grafu. Graf niespójny nie posiada drzewa rozpinającego.
Jeśli graf G jest niespójny, to graf będący suma drzew rozpinających jego składowych spójnych nazywamy lasem rozpinającym.
Rząd cykliczności (Liczba cyklomatyczna) - 𝛄(G
commencer à apprendre
liczba krawędzi dopełnienia dowolnego lasu rozpinającego grafu G.
Rząd rozcięcia - ξ(G)
commencer à apprendre
liczba krawędzi w dowolnym lesie rozpinającym G. 𝛄(G) + ξ(G) = |E|
Zbiór cykli fundamentalnych
commencer à apprendre
Niech L oznacza pewien las rozpinający grafu G. Zauważmy, że dodanie jakiejkolwiek krawędzi G nie należącej do L utworzy dokładnie jeden cykl. Taki cykl nazywamy cyklem fundamentalnym grafu G związanym z lasem rozpinającym L.
Zbiór cykli fundamentalnych związanych z lasem L to zbiór wszystkich taki cykli.
Zbiór rozcięć fundamentalnych
commencer à apprendre
Niech L oznacza pewien las rozpinający grafu G. Gdy z lasu L usuniemy dowolną krawędź, to (w odpowiadającej jej składowe spójnej) powstają dwa rozłączne zbiory wierzchołków v1, v2.
Zbiór wszystkich krawędzi G takich, że jeden koniec jest w v1 a drugi w v2 tworzy rozcięcie, które nazywamy rozcięciem fundamentalnym związanym z lasem L. Zbiór wszystkich taki rozcięcie nazywamy zbiorem rozcięć fundamentalnych związanych z lasem L.

Vous devez vous connecter pour poster un commentaire.